If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2+10a-17=0
a = 1; b = 10; c = -17;
Δ = b2-4ac
Δ = 102-4·1·(-17)
Δ = 168
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{168}=\sqrt{4*42}=\sqrt{4}*\sqrt{42}=2\sqrt{42}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{42}}{2*1}=\frac{-10-2\sqrt{42}}{2} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{42}}{2*1}=\frac{-10+2\sqrt{42}}{2} $
| 85=3y+5 | | 15v-6v=18 | | 2(2x+16)=2x-4 | | 8a^-3a=0 | | 128x+150=450;x=2.34 | | 6x-9=11x+7 | | 7k^+2k=0 | | 6x-9=24+7 | | 150x+128=450;x=2.15 | | 4/7x-2=3/7x+3/14 | | 16w-7w=36 | | 5m^-6m=0 | | |x^2-4|=9 | | 10p+1=18p-6/2 | | 2-5x=7+3x | | 2n^-3n=0 | | 3x+5/7=x-4/2 | | 7x-8=132 | | n^-6n=0 | | 5/4x-2/5x-13=25 | | p^+2p=0 | | 12(2x-1)=9(2x+1)+33 | | -2x+6(6x-18)=164 | | -7–8t=-7t–4 | | N(n+1)/2=105 | | -0.1x+31=0 | | -4x+8-22=-14 | | x/5+2=3x | | 2^(3*x)-8/2^(3*x)-6(2^x-1/2^(x-1))=1 | | 2+4f=4f | | n^-7n=0 | | 3/4x-9/8x=11/8x+7/8 |